United States Patent

US009348659B2

(12) 10) Patent No.: US 9,348,659 B2
Allen et al. 45) Date of Patent: May 24, 2016
(54) LOCK RESOLUTION FOR DISTRIBUTED 6,105,148 A 8/2000 Chung
DURABLE INSTANCES 6,112,222 A 8/2000 Govindaraju
6,442,748 Bl 8/2002 Bowman-Amuah
. . . . 6,457,003 Bl 9/2002 Gajda
(71) Applicant: Microsoft Technology Licensing, LL.C, 6.457.065 Bl 9/2002 chJh
Redmond, WA (US) 6,591,277 B2 7/2003 Spence
6,651,072 B1 11/2003 Carino, Jr. et al.
(72) Inventors: Nicholas A. Allen, Redmond, WA (US); 6,742,135 B1* 512004 Wu ..o GOG6F 9/524
Justin D. Brown, Seattle, WA (US) 710/200
6,934,755 Bl 8/2005 Saulpaugh
(73) Assignee: Microsoft Technology Licensing, LL.C, 7305423 B2 1222007 .StarbUCk
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
Jp H11-65863 3/1999
U.S.C. 154(b) by 456 days. P 2001067238 3/2001
21) Appl. No.: 13/851,748 OTHER PUBLICATIONS
(22) Filed: Mar. 27. 2013 “Fourth Office Action received for Chinese Patent Application No.
’ e 201080054552.0”, Mailed date: Aug. 28, 2014, 7 Pages.
(65) Prior Publication Data (Continued)
US 2013/0212590 A1 Aug. 15,2013 . .
Primary Examiner — Kenneth Tang
o 74) Attorney, Agent, or Firm —Ben Tabor; Raghu
Related U.S. Application Data (g < A ’
Chinagudabha; Micky Minhas
(63) Continuation of application No. 12/631,023, filed on
Dec. 4, 2009, now Pat. No. 8,424,009. (57) ABSTRACT
A command log selectively logs commands that have the
(51) Int.CL 2 ¥ 108
GO6F 9/46 (2006.01) potential to create conflicts based on instance locks. Lock
GO6F 9/52 (200 6.01) times can be used to distinguish cases where the instance is
(52) US.Cl ’ locked by the application host at a previous logical time from
N) cases where the instance is concurrently locked by the appli-
CPC e 2G00163P;)?/52G40(62]9 1232391/)5’ Zgoggé/‘f)zf cation host through a different name. A logical command
. . (o); (01) clock is also maintained for commands issued by the appli-
(58) Field of Classification Search cation host to a state persistence system, with introspection to
None . determine which issued commands may potentially take a
See application file for complete search history. lock. The command processor can resolve conflicts by paus-
(56) References Cited ing command execution until the effects of potentially con-

U.S. PATENT DOCUMENTS

5,721,904 A 2/1998 Tto
6,073,140 A 6/2000 Morgan

100

flicting locking commands become visible and examining the
lock time to distinguish among copies of a persisted state
storage location.

19 Claims, 4 Drawing Sheets

‘2
Persistence Provider
Application Host 103
101
Execution Command

Lock Response 113

> Instance

Persistence
Command
Processor

1

Conditions
133

Thread [
102A

Instance 108A
Instance

Es)tpre Instance
river Store
112
106 Command 112 107

Execution Command —» 104
Thread

(Lock (
Response
) 1 /,_/R)
Instance Instance
¢ *| 108a |* °| 1088 |* *

Command
Clock
108

US 9,348,659 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,313,727 B2 12/2007 Cabrera
7,349,512 B2 3/2008 Rausch
7,483,882 Bl 1/2009 Bumgarner et al.
8,037,476 B1* 10/2011 Shavitcooo.... GO6F 9/526
711/150
8,250,588 B2 8/2012 Allen et al.
2002/0083252 Al 6/2002 Armstrong
2005/0132250 Al 6/2005 Hansen
2005/0138375 Al* 6/2005 Sadjadi GO6F 17/30362
713/167
2005/0262310 Al 11/2005 Starbuck
2005/0278341 Al 12/2005 Kostadinov
2006/0020570 Al 1/2006 Wu
2006/0136279 Al 6/2006 Maybee
2007/0156486 Al 7/2007 Sanabria
2008/0319957 Al 12/2008 Muralidhar
2009/0282396 Al 11/2009 Boyer
2010/0122239 Al 5/2010 Neufeld
2010/0259614 Al* 10/2010 Chenc.o........ GO5D 1/0038
348/148

OTHER PUBLICATIONS

“Office Action received for Japanese Patent Application No. 2012-

5420287, Mailed date: Nov. 27, 2014, 4 Pages.

Notice of Allowance dated Oct. 23, 2013 cited in U.S. Appl. No.
13/484,911.

“Second Office Action Received for China Patent Application No.
201080054552.0”, Mailed Date: Nov. 5, 2013, Filed Date: Nov. 5,
2010, 6 Pages.

“Third Office Action Received for China Patent Application No.
201080054552.0”, Mailed Date: Apr. 3, 2014, Filed Date: Nov. 5,
2010, 7 Pages.

Office Action dated Apr. 05,2013 cited in U.S. Appl. No. 13/484,911.
Fifth Office Action Received for Chinese Patent Application No.
201080054552.0, Mailed Date: Jan. 6, 2015, 6 Pages.

Lumpp, Th, et al., “From high availability and disaster recovery to
business continuity solutions”, IBM Systems Journal, vol. 47, No. 4,
Jun. 3, 2008, pp. 605-619.

Wang, Lan, et al., “Persistent Detection and Recovery of State Incon-
sistencies”, Aug. 8, 2006, 23 pages.

Rodriguez, Jesus, Window Workflow Foundation Runtime Services;
The Persistence Service:, Oct. 5, 2005 14 pages.

Adya, Atul, et al., “Efficient Optimistic Concurrency Control Using
Loosely Synchronized Clocks”, Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Jose, CA,
May 1995, 12 pages.

Raynal, Michel, et al. “Logical Time: Capturing Causality in Distrib-
uted Systems”, Feb. 1996, pp. 49-56.

Liskov, Barbara, et al., “Providing Persistent Objects in Distributed
Systems”, Proceedings of ECOOP’99, 1999, 28 pages. (The month
of Publication is irrelevant since the year of Publication is clearly
prior to the filing of the Application).

Maria Del Mar Roldan-Garcia, “A Survey on Disk Oriented Query-
ing and Reasoning on the Semantic Web”, Prceedings of the 22nd
International Conference on Data Engineering Workshops, 2006, 8
pages. (The month of Publication is irrelevant since the year of
Publication is clearly prior to the filing of the Application).

MSDN, “Load Workflow Command Class”, 2010 Microsoft Corpo-
ration, 2 pages. (The month of Publication is irrelevant since the year
of Publication is clearly prior to the filing of the Application).
Rodriguez, Jesus, “Jesus Rodriguez’s WebLog”, Microsoft MVP
BizTalk Server Oracle ACE, Oct. 5, 2005, 16 pages.

MSDN, “Instance Stores”, 2010 Microsoft Corporation, 3 pages.
(The month of Publication is irrelevant since the year of Publication
is clearly prior to the filing of the Application).

Sun Microsystems, “Sun Java System Application Server 9.1 Devel-
oper’s Guide”, May 2008, 316 pages.

Kahlon, V. et al, “Reasoning about Threads Communicating via
Locks Computer Aided Verification”, Lecture Notes in Computer
Science, 2005, vol. 3576/2005, pp. 267-274 (The month of Publica-
tion is irrelevant since the year of Publication is clearly prior to the
filing of the Application).

Rajwaro, R. et al., “Transactional Execution: Toward Reliable, High-
Performance Multithreading”, IEEE Computer Society, IEEE Micro,
2003, vol. 23, No. 6, pp. 117-125. (The month of Publication is
irrelevant since the year of Publication is clearly prior to the filing of
the Application).

Notice of Allowance dated Mar. 13, 2012 cited in U.S. Appl. No.
12/485,771.

Notice of Allowance dated May 11, 2012 cited in U.S. Appl. No.
12/485,771.

Notice of Allowance dated Jun. 26, 2012 cited in U.S. Appl. No.
12/729,836.

Office Action dated Sep. 13,2012 cited in U.S. Appl. No. 12/631,023.
Notice of Allowance dated Jan. 8, 2013 cited in U.S. Appl. No.
12/631,023.

* cited by examiner

US 9,348,659 B2

Sheet 1 of 4

May 24, 2016

U.S. Patent

« «| 9801
soue)su|

Va0l
soue)sy|

TT—~— (.

2

} 84nbi4

suodsay
3007

gzor
peaiyL

71T puewwo) (

)

TIT puewwo) &

)

wg aoueIsy| w «

CT T esuodsay 3207

pUBWIWOD v

SUOIJIPUOD

uoIINoaxg

V2ol
peaiyy

801
%0010 —
PUBWIWOYD L
WTTT ocmEEoov
80T tLEL
607 puewwo)
901 7ol A
JOAUC J0s$820.1d
21015 puBLIWOD
‘|v soueISU| aoug)sIsIad
oouUBISU| |

€0l
Japiaold sousisisied

LLL
M PUBLIWOD v

L

00l

uoIINoaxg

10F

1SOH uonedlddy

US 9,348,659 B2

Sheet 2 of 4

May 24, 2016

U.S. Patent

18¢

33010
soue)su|

€9¢
UOISJOA

80¢C
aoue)su|

19¢
UOISIBA

80¢
sJuelsu|

B0c¢ 9doueisu|

[2%4
asuodsay 4007

TOz UOISIDA

10C

Z 9inbi14

Q| v~
o || ©
—| |CNI| N
[Vl

25U0dsoy %007

\ﬂ ccmEEoo\

50z L1§2

607 puewwon

2101

aour)sU| TT2 puewwo) &

TOZ UOISIBA

80¢ 9ouB)sy|

yAYA
s)nsay
/SpUBWWOYD
Yo

|

Tl ¢ osuodsay 3007

»

A

>

cle

d¢0¢
pealyL

puBlWWO)

{ Lic A

uonnoexg

V202
peaiyL

90¢ $0¢
1055900.d
4oAuad pUBLIWOYD
2401 8ous)sIslad
soue)jsu| souesy|
[V JBpIACId 8oUd)sISiad

MocmEEoov

4

00¢

uonnoexg

T0Z .
1SOH uonesddy

U.S. Patent May 24, 2016 Sheet 3 of 4 US 9,348,659 B2

J(,/30\9):\»
301~

A Persistence Provider Receiving A First Command From A First Execution Thread
Included In The Application Host, The First Command Configured To Request
Acquisition Of A Lock For A First Instance When One Or More Conditions Are Satisfied

302
The Persistence Provider Recording The First Command In A Command Log

303~

The Persistence Provider Submitting The First Command To The Instance Store

304~
The Persistence Provider Receiving A Second Command From A Second
Execution Thread Included In The Application Host, The Second Command
Configured To Request That A Second Instance Be Locked To The Second
Execution Thread For Processing By The Second Command

305
The Persistence Provider Recording The Second Command In The Command Log

306
The Persistence Provider Submitting The Second Command To The Instance Store

307~
The Persistence Provider Receiving A Lock Response For The Second Command
From The Instance Store, The Lock Response Indicating That The Application
Host Is The Holder Of the Lock For The Second Instance, The Lock Response
Received Subsequent To Submitting The First Command And Prior To The
Completion Of the First Command

308—

The Persistence Provider Referring To The Command Log To Determine That The
Current Resolution Of The First Command Provides Insufficient Information To
Determine: (a) If The First Command Acquired A Lock On The First Instance And
(b) If The First Instance And The Second Instance Are The Same Instance, The
Insufficient Information Resulting In Ambiguity With Respect To Whether Or Not
The Lock The Second Command Requested Was A Lock Previously Acquired By
The First Command

309—

The Persistence Provider Pausing Processing Of The Second Command Until
Reaching Further Resolution Of The First Command, Further Resolution Providing At
Least Additional Information Regarding The One Or More Conditions Being Satisfied

310

The Persistence Provider Determining How to Proceed With Respect To The Second
Command Based On The Additional Information Regarding
Resolution Of the First Command

Figure 3

U.S. Patent May 24, 2016 Sheet 4 of 4 US 9,348,659 B2

400\
401 —~

A Persistence Provider Receiving A First Command From A First Execution
Thread Included In The Application Host, The First Command Configured To
Request Acquisition Of A Lock For A First Instance

402 —~

The Persistence Provider Submitting The First Command To The Instance Store

403 —,

The Persistence Provider Receiving A Lock Response For The First Command
From The Instance Store, The Lock Response Indicating That The Application
Host Has Acquired A Lock For The First Instance, The Lock For The First
Instance Being For A First Instance Version

404 —

The Persistence Provider Receiving A Second Command From A Second
Execution Thread Included In The Application Host, The Second Command
Configured To Request That A Second Instance Be Locked To The Second

Execution Thread For Processing By The Second Command

405 —

The Persistence Provider Submitting The Second Command To
The Instance Store

406~

The Persistence Provider Receiving A Lock Response For The Second
Command From The Instance Store, The Lock Response Indicating That The
Application Host Has Acquired A Lock For The Second Instance, The Lock For
The Second Instance Being For A Second Instance Version

407 —~

The Persistence Provider Determining That The First Instance And The Second
Instance Are The Same Instance

408 —

The Persistence Provider Determining That The Second Instance Version Is A
Newer Instance Version Than The First Instance Version

409 —~

The Persistence Provider Failing The First Command In Response To The
Determination That The First Command Is Holding A Lock For An Obsolete
Instance Version

Figure 4

US 9,348,659 B2

1
LOCK RESOLUTION FOR DISTRIBUTED
DURABLE INSTANCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/631,023 filed on Dec. 4, 2009 and entitled
“LOCK RESOLUTION FOR DISTRIBUTED DURABLE
INSTANCES,” which issued as U.S. Pat. No. 8,424,009 on
Apr. 16, 2013, and which application is expressly incorpo-
rated herein by reference in its entirety.

BACKGROUND
Background and Relevant Art

Computer systems and related technology affect many
aspects of society. Indeed, the computer system’s ability to
process information has transformed the way we live and
work. Computer systems now commonly perform a host of
tasks (e.g., word processing, scheduling, accounting, etc.)
that prior to the advent of the computer system were per-
formed manually. More recently, computer systems have
been coupled to one another and to other electronic devices to
form both wired and wireless computer networks over which
the computer systems and other electronic devices can trans-
fer electronic data. Accordingly, the performance of many
computing tasks are distributed across a number of different
computer systems and/or a number of different computing
environments.

Long-running applications, such as, for example, work-
flow applications, often benefit from periodically persisting
their work to allow for the application to recover after errors,
crashes, or machine failures. Persisting work permits appli-
cations to temporarily go idle and have their resources reas-
signed. To persist work, an application host coordinates the
persisted state with runtime state to ensure that a consistent
checkpoint is created. For example, the persisted state may
need to coordinate with application transactions, message
notifications, locks, local state caches, etc.

Computer systems are also substantially parallelized divid-
ing work among multiple computation threads, cores, and
processors, including executing many simultaneous long-
running applications. Thus, an application host must employ
careful bookkeeping to allow multiple simultaneous execu-
tion threads to interact with the persisted and runtime states.
As the application host and state persistence system can be
located on different machines, this coordination may further
be embedded within a distributed system. The interactions
between the application host and the state persistence system
may thereby be subject to reordering even if an absolute order
is placed on the execution threads at the application host.
Moreover, persisted state may be identified by a variety of
aliases, making it non-obvious that two execution threads are
referencing the same state.

These conditions (as well as other combinations of condi-
tions) can conspire to create complexities that would be
unlikely in sequential systems. For example, an application
host may be one of several similarly functioning programs
competing to apply modifications to persisted state in a
shared state persistence system. As there may be inherent
races in such a system a portion of these modifications may be
in conflict. Further, due to these complexities and despite

10

15

20

25

30

40

45

50

60

65

2

using careful and correct bookkeeping, an application host
can determine that it is in conflict with itself.

BRIEF SUMMARY

The present invention extends to methods, systems, and
computer program products for resolving lock conflicts.
Embodiments of the invention include methods for resolving
lock conflicts between two or more execution threads
attempting to lock an instance stored in an instance store. In
some embodiments, a persistence provider receives a first
command from a first execution thread included in an appli-
cation host. The first command is configured to request acqui-
sition of a lock for a first instance when one or more condi-
tions are satisfied. The persistence provider records the first
command in a command log. The persistence provider sub-
mits the first command to the instance store.

The persistence provider receives a second command from
a second execution thread included in the application host.
The second command is configured to request that a second
instance be locked to the second execution thread for process-
ing by the second command. The persistence provider records
the second command in the command log. The persistence
provider submits the second command to the instance store.

The persistence provider receives a lock response for the
second command from the instance store. The lock response
indicates that the application host is the holder of the lock for
the second instance. The lock response is received subsequent
to submitting the first command and prior to the completion of
the first command.

The persistence provider refers to the command log to
determine that the current resolution of the first command
provides insufficient information to determine: (a) if the first
command acquired a lock on the first instance and (b) if the
first instance and second instance are the same instance. The
insufficient information results in ambiguity with respect to
whether or not the lock the second command requested was a
lock previously acquired by the first command. The persis-
tence provider pauses processing of the second command
until reaching further resolution of the first command. Further
resolution of the first command provides at least additional
information regarding the one or more conditions being sat-
isfied. The persistence provider determines that the first com-
mand acquired the lock the second command requested based
on the additional information. The persistence provider fails
the second command in response to the determination that the
first command had acquired the lock.

In other embodiments, a persistence provider receives a
first command from a first execution thread included in the
application host. The first command is configured to request
acquisition of a lock for a first instance. The persistence
provider submits the first command to the instance store. The
persistence provider receives a lock response for the first
command from the instance store. The lock response indi-
cates that the application host has acquired a lock for the first
instance. The lock for the first instance is for a first instance
version

The persistence provider receives a second command from
a second execution thread included in the application host.
The second command is configured to request that a second
instance be locked to the second execution thread for process-
ing by the second command. The persistence provider sub-
mits the second command to the instance store. The persis-
tence provider receives a lock response for the second
command from the instance store. The lock response indi-

US 9,348,659 B2

3

cates that the application host has acquired a lock for the
second instance. The lock for the second instance is for a
second instance version.

The persistence provider determines that the first instance
and second instance are the same instance. The persistence
provider determines that the second instance version is a
newer instance version than the first instance version. The
persistence provider fails the first command in response to the
determination that the first command is holding a lock for an
obsolete instance version.

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

Additional features and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by the prac-
tice of the invention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out in the
appended claims. These and other features of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example computer architecture that
facilitates resolving lock conflicts.

FIG. 2 illustrates another example computer architecture
that facilitates resolving lock conflicts.

FIG. 3 illustrates a flow chart of an example method for
resolving lock conflicts.

FIG. 4 illustrates a flow chart of another example method
for resolving lock conflicts.

DETAILED DESCRIPTION

The present invention extends to methods, systems, and
computer program products for resolving lock conflicts.
Embodiments of the invention include methods for resolving
lock conflicts between two or more execution threads
attempting to lock an instance stored in an instance store. In
some embodiments, a persistence provider receives a first
command from a first execution thread included in an appli-
cation host. The first command is configured to request acqui-
sition of a lock for a first instance when one or more condi-
tions are satisfied. The persistence provider records the first
command in a command log. The persistence provider sub-
mits the first command to the instance store.

The persistence provider receives a second command from
a second execution thread included in the application host.
The second command is configured to request that a second
instance be locked to the second execution thread for process-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing by the second command. The persistence provider records
the second command in the command log. The persistence
provider submits the second command to the instance store.

The persistence provider receives a lock response for the
second command from the instance store. The lock response
indicates that the application host is the holder of the lock for
the second instance. The lock response is received subsequent
to submitting the first command and prior to the completion of
the first command.

The persistence provider refers to the command log to
determine that the current resolution of the first command
provides insufficient information to determine: (a) if the first
command acquired a lock on the first instance and (b) if the
first instance and second instance are the same instance. The
insufficient information results in ambiguity with respect to
whether or not the lock the second command requested was a
lock previously acquired by the first command. The persis-
tence provider pauses processing of the second command
until reaching further resolution of the first command. Further
resolution of the first command provides at least additional
information regarding the one or more conditions being sat-
isfied. The persistence provider determines that the first com-
mand acquired the lock the second command requested based
on the additional information. The persistence provider fails
the second command in response to the determination that the
first command had acquired the lock.

In other embodiments, a persistence provider receives a
first command from a first execution thread included in the
application host. The first command is configured to request
acquisition of a lock for a first instance. The persistence
provider submits the first command to the instance store. The
persistence provider receives a lock response for the first
command from the instance store. The lock response indi-
cates that the application host has acquired a lock for the first
instance. The lock for the first instance is for a first instance
version

The persistence provider receives a second command from
a second execution thread included in the application host.
The second command is configured to request that a second
instance be locked to the second execution thread for process-
ing by the second command. The persistence provider sub-
mits the second command to the instance store. The persis-
tence provider receives a lock response for the second
command from the instance store. The lock response indi-
cates that the application host has acquired a lock for the
second instance. The lock for the second instance is for a
second instance version.

The persistence provider determines that the first instance
and second instance are the same instance. The persistence
provider determines that the second instance version is a
newer instance version than the first instance version. The
persistence provider fails the first command in response to the
determination that the first command is holding a lock for an
obsolete instance version.

Embodiments of the present invention may comprise or
utilize a special purpose or general-purpose computer includ-
ing computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail
below. Embodiments within the scope of the present inven-
tion also include physical and other computer-readable media
for carrying or storing computer-executable instructions and/
or data structures. Such computer-readable media can be any
available media that can be accessed by a general purpose or
special purpose computer system. Computer-readable media
that store computer-executable instructions are physical stor-
age media. Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by way

US 9,348,659 B2

5

of'example, and not limitation, embodiments of the invention
can comprise at least two distinctly different kinds of com-
puter-readable media: computer storage media and transmis-
sion media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for-
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 illustrates an example computer architecture 100
that facilitates resolving lock conflicts. Referring to FIG. 1,
computer architecture 100 includes application host 101, per-
sistence provider 103, and instance store 107. Each of the
depicted computer systems is connected to one another over
(or is part of) a network, such as, for example, a Local Area
Network (“LLAN”), a Wide Area Network (“WAN”), and even
the Internet. Accordingly, each of the depicted computer sys-
tems as well as any other connected computer systems and
their components, can create message related data and
exchange message related data (e.g., Internet Protocol (“IP”)
datagrams and other higher layer protocols that utilize IP
datagrams, such as, Transmission Control Protocol (“TCP”),
Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer
Protocol (“SMTP”), etc.) over the network.

Application host 101 includes a plurality of execution
threads, including execution threads 102A and 102B. Gener-
ally, execution threads are configured to issue (e.g., persis-
tence) commands for interacting with instances in instance
store 107. Application host 101 can be an entity, such as, for
example, a program or administrative tool and execution
threads can be modules within application host 101 that
manipulate instances stored in instance store 107.

Within application host 101, execution threads 102A,
102B, etc., can correspond to a program sequence of a long-
running application. However, an execution thread may not
directly correspond to the computation threads provided by
the operating system. For example, in an application host
runtime that supports asynchronous execution or resumption
from continuation points, the binding of an execution thread
to a computation thread may be dynamic and transient. Thus,
some or all of the application host execution threads may be
executing simultaneously on one or more computation
threads.

Each execution thread of application host 101, including
execution threads 102A and 102B, is configured to perform
many of the functions of application host 101. For example,
an execution thread can be configured to request an instance
handle for the instance store from the persistence provider,
submit commands to the instance persistence command pro-
cessor, and receive persisted application state responsive to
the submitted commands. Thus, generally references made to
functions being performed by an application host can include
functions performed by execution threads of the application
host.

Instance store 107 provides durable storage for instances,
such as, for example, instance 108 A and 108B. Instance store
107 is configured to receive and process (e.g., persistence)
commands for interacting with instances. Instance store 107
can persist application state as well as return persisted state to
a requesting entity (e.g., an execution thread) in response to
persistence commands.

Generally, persistence provider 103 is configured to trans-
late persistence commands received from an execution thread
into commands compatible with instance store 107. For
example, persistence provider 103 can translate persistence
commands from execution thread 102A or 102B into persis-
tence commands compatible with instance store 107.

As depicted, persistence provider 103 includes instance
persistence command processor 104, instance store driver
106, command clock 108, and command log 109. Instance
persistence command processor 104 defines a contract
between application host 101 and instance store 107. As such,
instance persistence command processor 104 is an interface
between application host 101 and instance store 107 that
permits application host 101 to provide commands that
modify or inspect instance store 107. For example, the com-

US 9,348,659 B2

7

bination of an instance persistence command processor 104
and an instance store 107 implemented using SQL Server
might be called a SQL persistence provider. The persistence
provider modifies the state of the instance store according to
a host’s commands using a set of permissible state modifica-
tions defined by instance persistence command processor
104.

Generally, command log 109 is configured to track com-
mands submitted by an application host for which the com-
mand results and/or effects have not yet been made visible to
the application host. Commands tracked in command log 109
can be referred to as “in flight” commands.

Command clock 108 is a monotonically increasing counter
used to create partial causality order among the submission of
commands and/or receipt of command results by the execu-
tion threads of an application host.

Accordingly, command clock 108 is configured to main-
tain a logical time for persistence provider 103. When appro-
priate, commands received at persistence provider 103 can be
time stamped using a time from command clock 108 and
logged into command log 109. As such, command clock 108
facilitates a temporal understanding of the order commands
are received. Instance persistence command processor 103
can use this temporal understanding (along with other infor-
mation) when resolving lock conflicts (e.g., between compet-
ing execution threads of application host 101).

It may be that some but not all commands are logged into
command log 109. When determining whether or not to log a
command in command log 109, persistence provider 103 can
distinguish between commands that have potential to cause a
lock conflict and commands that have no potential to cause a
lock conflict. Commands that can potentially cause a lock
conflict are logged in command log 109. On the other hand,
commands that have no potential to cause a lock conflict may
be allowed to execute without logging.

Some commands can be determined to have no potential to
cause a lock conflict due to being a type of command that
definitely does not request acquisition of any lock. For
example, commands that request uncoordinated read access
to aninstance have little, if any, potential to conflict with other
commands and thus may be allowed to execute without log-
ging (since these commands do not request acquisition of a
lock).

On the other hand, commands determined to potentially
cause a lock conflict can be logged in command log 109.
When a command is received, instance persistence command
processor 104 may have insufficient information to determine
if the command is to request acquisition of a lock for an
instance that is already locked. For example, it may be that an
instance is identifiable using a variety of different aliases.
Thus, upon receiving a command including an instance alias,
it may not be readily apparent what instance the instance alias
refers to. As such, instance persistence command processor
104 is unable to classify the command as a command that has
no potential to cause lock conflict until further information
(resolution of the alias to an instance handle) is obtained.

Whether or not a command requests acquisition of a lock
can depend on various conditions associated with the com-
mand being satisfied. Information both internal and external
(e.g., time, date, etc.) to persistence provider 103 can be
utilized to determine if associated conditions are satisfied.
Further, persistence provider 103 can become aware of infor-
mation related to different associated conditions at different
times, including before or after a command is received at
instance persistence command processor 104. Thus, a
detected potential to cause a lock conflict can be removed
when additional information becomes available. For

20

25

35

40

45

55

8

example, a command that requests acquisition of a lock if it is
Wednesday can initially be logged in command log 109.
However, upon persistence provider 103 becoming aware that
it is Thursday, the command can be removed from command
log 109.

In some embodiments, a command itself may contain
information indicating the possibility of requesting acquisi-
tion of a lock. As such, instance persistence command pro-
cessor 104 can ask the command if there is some possibility of
it requesting acquisition of a lock. In other embodiments, a
list of commands that definitely do not request acquisition of
a lock is maintained. When a command is received, instance
persistence command processor 104 can refer to the list.

Generally, instance store driver 106 is configured to break
down commands when necessary for compatible communi-
cation with instance store 107. For example, an application
host command set may lack a particular command from an
instance store command set. However, it may be that using a
combination of two or more commands from an instance store
command set, that a command from an application host com-
mand set can be realized. Thus, when persistence provider
103 detects that a received persistence command is not
included in an instance store command set, persistence pro-
vider 103 can refer to instance store driver 106 to break the
command down into other compatible commands.

From time to time, execution threads 102A, 102B, etc, can
submit commands to persistence provider 103. When appro-
priate, received commands can be time stamped by command
clock 108 and stored in command log 109.

FIG. 3 illustrates a flow chart of an example method 300 for
resolving a lock conflict between two or more execution
threads. Method 300 will be described with respect to the
components and data of computer architecture 100.

Method 300 includes an act of a persistence provider (e.g.,
persistence provider 103) receiving a first command from a
first execution thread included in the application host, the first
command configured to request acquisition of a lock for a first
instance when one or more conditions are satisfied (act 301).
For example, instances persistence command processor 104
can receive command 111, including conditions 133, from
execution thread 102A. Command 111 is configured to
request acquisition of a lock for instance 108 A when condi-
tions 133 are satisfied. Conditions 133 can represent a con-
ditional statement, such as, for example, “iftoday is Wednes-
day take a lock”.

Method 300 includes an act of the persistence provider
recording the first command in a command log (act 302). For
example, upon receiving command 111, instance persistence
command processor 104 may have insufficient information to
determine with certainty that command 111 has no potential
to cause a lock conflict (e.g., instance persistence command
processor 104 may not know whether it is Wednesday). As
such, instance persistence command processor 104 records
command 111 in command log 109. In some embodiments,
entries in command log 109 include a command and time
stamp from command clock 108. For example, entry 131
includes command 111 and time 121.

Method 300 includes an act of the persistence provider
submitting the first command to the instance store (act 303).
For example, instance store driver 106 can submit command
111 to instance store 107.

Method 300 includes an act of the persistence provider
receiving a second command from a second execution thread
included in the application host, the second command con-
figured to request that a second instance be locked to the
second execution thread for processing by the second com-
mand (act 304). For example, instance persistence command

US 9,348,659 B2

9

processor 104 receives command 112 from execution thread
102B. Command 112 is configured to request that a second
instance be locked to execution thread 102B for processing by
command 112.

Method 300 includes an act of the persistence provider
recording the second command in the command log (act 305).
For example, upon receiving command 112, instance persis-
tence command provider 104 may have insufficient informa-
tion to determine with certainty that command 112 has no
potential to cause a lock conflict. For example, instance per-
sistence command processor 104 may lack information for
determining if an alias in command 112 refers to an instance
for which lock acquisition has already been requested. As
such, instance persistence command processor 104 records
entry 132, including command 112 and time 122 (a time after
time 121), in command log 109.

Method 300 includes an act of the persistence provider
submitting the second command to the instance store (act
306). For example, instance store driver 106 can submit com-
mand 112 to instance store 107.

Method 300 includes an act of the persistence provider
receiving a lock response for the second command from the
instance store, the lock response indicating that the applica-
tion host is the holder of the lock for the second instance, the
lock response received subsequent to submitting the first
command and prior to the completion of the first command
(act 307). For example, instance store driver 106 can receive
lock response 114 from instance store 107. Lock response
114 can indicate that application host 101 is the holder of the
lock for instance 108A. Lock response 114 can be received
subsequent to submitting command 111 and prior to complet-
ing command 111 (e.g., instance store driver 106 may not yet
have received lock response 113).

Method 300 includes an act of the persistence provider
referring to the command log to determine that the current
resolution of the first command provides insufficient infor-
mation to determine: (a) if the first command acquired a lock
on the first instance and (b) if the first instance and second
instance are the same instance, the insufficient information
resulting in ambiguity with respect to whether or not the lock
the second command requested was a lock previously
acquired by the first command (act 308). For example, per-
sistence provider 103 may have insufficient information to
determine if command 111 acquired a lock and/or if com-
mands 111 and 112 reference the same instance. The insuffi-
cient information results in ambiguity with respect to whether
the lock requested by command 112 was previously obtained
by command 111.

The persistence provider may exclude commands in the
command log that can be determined to have no potential to
cause a lock conflict due to the commands only referencing
instances that are definitely not instance 108 A. For example,
instance persistence command processor 104 may determine
that a command in command log 109 has unresolved instance
aliases that are known to not be any of the aliases for instance
108A.

Method 300 includes an act of the persistence provider
pausing processing of the second command until reaching
further resolution of the first command, further resolution
providing at least additional information regarding the one or
more conditions being satisfied (act 309). For example, per-
sistence provider 103 can pause processing command 112
until reaching further resolution of command 111. The further
resolution of command 111 can provide information regard-
ing conditions 133 being satisfied. For example, if command
111 requests a lock for an unresolved instance alias, persis-
tence provider 130 can pause processing command 112 until

10

15

20

25

30

35

40

45

50

55

60

65

10

the instance alias is resolved to a specific instance. Further, it
may be that persistence provider 103 receives lock response
113, indicating that command 111 has acquired a lock on
instance 108A (and thus any alias in command 111 referenced
instance 108A).

Method 300 includes an act of the persistence provider
determining how to proceed with respect to the second com-
mand based on the additional information regarding the reso-
Iution of the first command (act 310). In some embodiments
the persistence provider determines that the first command
acquired a lock the second command requested based on the
additional information. For example, instance persistence
command processor 104 can determine that command 111
acquired a lock on instance 108A.. Instance persistence com-
mand processor 104 can also determine that command 112
received lock response 114 because command 112 also
requested a lock of instance 108A (but after the lock of
instance 108A was already acquired by command 111).
When appropriate, instance persistence command processor
104 can refer to command log 109 to determine that command
111 was received prior to command 112. In these embodi-
ments, the persistence provider fails the second command in
response to the determination that the first command had
acquired the lock. For example, persistence provider 103 can
fail command 112 in response to determining that command
111 had acquired the lock on instance 108A.

In other embodiments, the persistence provider determines
that the first command did not acquire the lock the second
command requested based on the additional information. For
example, instance persistence command processor 104 can
determine that command 111 did not acquire a lock on
instance 108A. In these other embodiments, an application
host can be directed to attempt to override the lock indicated
by the lock response received for the second command. For
example, application host 101 can be directed to attempt to
override the lock indicated in lock response 114 for command
112.

One reason for overriding a lock is that it may be deter-
mined that the lock is a spurious lock. For example, a lock left
may be left over from a previous computation that has been
forgotten by the application host. Thus, the lock existed at the
time the second command was received by the instance store
but the application host has no record of the lock when the
second command response is received. A spurious lock can be
detected when all of the previously issued commands poten-
tially conflicting with the second command turn out to not
have acquired the lock.

Alternately, persistence provider 103 can direct applica-
tion host 101 to use the copy of instance 108 A that is already
locked to command 111.

Embodiments of the invention also include resolving lock
conflicts including additional commands. For example, a per-
sistence provider can receive a third command from a third
execution thread included in the application host. The third
command can be configured to request acquisition of a lock
for a third instance when one or more conditions are satisfied.
The persistence provider can record the third command in a
command log.

The persistence provider submits the third command to the
instance store. The persistence provider refers to the com-
mand log to determine that the current resolution of the third
command provides insufficient information to determine: (a)
if the third command acquired a lock on the third instance and
(b) if the third instance and second instance are the same
instance. The insufficient information results in ambiguity
with respect to whether or not the lock the second command

US 9,348,659 B2

11

(e.g., command 112) requested was a lock previously
acquired by the third command.

The persistence provider pauses processing of the second
command until reaching further resolution of the third com-
mand. Further resolution provides at least additional infor-
mation regarding the one or more conditions being satisfied.
The persistence provider determines how to proceed with
respect to the second command based on the additional infor-
mation regarding the resolution of the third command.

FIG. 2 illustrates an example computer architecture 200
that facilitates resolving lock conflicts. Referring to FIG. 2,
computer architecture 200 includes application host 201, per-
sistence provider 203, and instance store 207. Similar to
computer architecture 100, each of the depicted computer
systems is connected to one another over (or is part of) a
network, such as, for example, a Local Area Network
(“LAN"), a Wide Area Network (“WAN™), and even the Inter-
net. Accordingly, each of the depicted computer systems as
well as any other connected computer systems and their com-
ponents, can create message related data and exchange mes-
sage related data (e.g., Internet Protocol (“IP”) datagrams and
other higher layer protocols that utilize IP datagrams, such as,
Transmission Control Protocol (““TCP”), Hypertext Transfer
Protocol (“HTTP”), Simple Mail Transfer Protocol
(“SMTP”), etc.) over the network.

Within FIG. 2, similarly labeled components from FIG. 1
include similar functionality. For example, application host
201 includes a plurality of execution threads, including
execution threads 202A and 202B. Generally, execution
threads are configured to issue (e.g., persistence) commands
for interacting with instances in instance store 207. Applica-
tion host 201 can be an entity, such as, for example, a program
or administrative tool and execution thread can be modules
within application host 201 that manipulate instances stored
in instance store 207

Instance store 207 provides durable storage for instances,
such as, for example, instance 208. Instance store 207 is
configured to receive and process (e.g., persistence) com-
mands for interacting with instances. Instance store 207 can
persist application state as well as return persisted state to a
requesting entity (e.g., an execution thread) in response to
persistence commands.

Generally, persistence provider 203 is configured to trans-
late persistence commands received from an execution thread
into commands compatible with instance store 207. For
example, persistence provider 203 can translate persistence
commands from execution thread 202A or 202B into persis-
tence commands compatible with instance store 207.

As depicted, persistence provider 203 includes instance
persistence command processor 204, instance store driver
206, and command log 209. Instance persistence command
processor 204 defines a contract between application host 201
and instance store 207. As such, instance persistence com-
mand processor 204 is an interface between application host
201 and instance store 207 that permits application host 201
to provide commands that modify or inspect instance store
207. For example, the combination of an instance persistence
command processor 204 and an instance store 207 imple-
mented using SQL Server might be called a SQL persistence
provider. The persistence provider modifies the state of the
instance store according to a host’s commands using a set of
permissible state modifications defined by instance persis-
tence command processor 204.

Similar to functionality at persistence provider 103, it may
be that some but not all commands are logged into command
log 209. When determining whether or not to log a command
in command log 209, persistence provider 203 can distin-

10

15

20

25

30

35

40

45

50

55

60

65

12

guish between commands that have potential to cause a lock
conflict and commands that have no potential to cause a lock
conflict. Commands that can potentially cause a lock conflict
are logged in command log 209. On the other hand, com-
mands that have no potential to cause a lock conflict may be
allowed to execute without logging. Instance persistence
command processor 204 can make these determinations simi-
lar to how command processor 104 makes determinations
with respect to logging a command in command log 109.

Generally, instance store driver 206 is configured to break
down commands when necessary for compatible communi-
cation with instance store 207. For example, an application
host command set may lack a particular command from an
instance store command set. However, it may be that using a
combination of two or more commands from an instance store
command set, that a command from an application host com-
mand set can be realized. Thus, when persistence provider
203 detects that a received persistence command is not
included in an instance sore command set, persistence pro-
vider 203 can refer to instance store driver 206 to break the
command down into other compatible commands.

As depicted, instance store 207 includes instance clock
281. Instance clock 281 is configured to maintain versions for
instances stored in instance store 207. Instance clock 281 can
maintain versions in accordance with version update rules
that define when a version is to be updated. For example,
version update rules can dictate that an instance version is to
be updated (incremented) when an exclusive lock is taken for
an instance, each time an exclusive lock is released for an
instance, when persisted state associated with an instance is
modified, etc. Maintaining instance versions can include
incrementing a counter when a version is to be updated. For
example, upon moditying data from an instance currently at
version 3, the instance can be incremented to version 4. Per-
sistence provider 203 can use instance versions when resolv-
ing lock conflicts.

From time to time, execution threads 202 A, 202B, etc, can
submit commands to persistence provider 203. Also as
depicted, other commands/results 217 can be communicated
to/from instance store 207 and other applications hosts (pos-
sibly through other intermediary persistence providers).
Thus, application host 201 as well as other application hosts
can interact with instance store 207, potentially causing
instance versions to change. For example, in response to
received commands (from application host 201 and/or other
application hosts) instance 208 can transition from version
261 (an earlier version) to version 263 (a later version).

FIG. 4 illustrates a flow chart of an example method 200 for
resolving a lock conflict between two or more execution
threads. Method 400 will be described with respect to the
components and data of computer architecture 200.

Method 400 includes an act of a persistence provider
receiving a first command from a first execution thread
included in the application host, the first command configured
to request acquisition of a lock for a first instance (act 401).
For example, instance persistence command processor 204
can receive command 211 from execution thread 202A. Com-
mand 211 can be configured to request acquisition of a lock
for instance 208.

Method 400 includes an act of the persistence provider
submitting the first command to the instance store (act 402).
For example, instance store driver 206 can submit command
211 to instance store 207.

Method 400 includes an act of the persistence provider
receiving a lock response for the first command from the
instance store, the lock response indicating that the applica-
tion host has acquired a lock for the first instance, the lock for

US 9,348,659 B2

13

the first instance being for a first instance version (act 403).
For example, instance store driver 206 can receive lock
response 213 from instance store 207. Lock response 213
indicates that command 211 has locked version 261 of
instance 208. Instance persistence provider 204 can log entry
231 in command log 209. As depicted, entry 231 associates
command 211 with lock response 213.

Method 400 includes an act of the persistence provider
receiving a second command from a second execution thread
included in the application host, the second command con-
figured to request that a second instance be locked to the
second execution thread for processing by the second com-
mand (act 404). For example, instance persistence command
processor 204 can receive command 212 from execution
thread 202B. Command 212 can be configured to request
acquisition of a clock for instance 208.

Method 400 includes an act of the persistence provider
submitting the second command to the instance store (act
405). For example, instance store driver 206 can submit com-
mand 212 to instance store 207.

Method 400 includes an act of the persistence provider
receiving a lock response for the second command from the
instance store, the lock response indicating that the applica-
tion host has acquired a lock for the second instance, the lock
for the second instance being for a second instance version
(act 406). For example, instance store driver 206 can receive
lock response 214 from instance store 207. Lock response
214 indicates that command 212 has locked version 263 of
instance 208.

As previously described, other applications hosts can inter-
act with instance store 207 (as indicated by other commands/
results 217). Thus, it may be that commands 211 and 212 are
interspersed with other commands (from other application
hosts) received at instance store 207. Due to any of a variety
of factors, instance store 207 can release a lock that was
previously acquired by an application host. For example, due
to communication failure, instance store 207 can detect that it
is no longer communicating with execution thread 202A
(and/or persistence provider 203) As a result, instance store
207 can release a lock previously acquired by execution
thread 202A. However, also as a result of the communication
failure, application host 201 and/or persistence provider 203
may have no way to know that instance store 207 released the
lock. Thus, for example, execution thread 202 A can continue
as if it has acquired the lock indicated in lock response 213,
even though the lock has in fact been released at instance store
207.

Subsequent to releasing the lock, another application host
can acquire a lock on the same instance and cause a version to
be updated. For example, through commands in other/com-
mands results 217, instance 208 can be updated from version
261 (an earlier version) to version 263 (a later version). Fur-
ther, this can occur during the time execution thread 202A
continues based on lock response 213 but does not in facthave
a lock on instance 208.

Method 400 includes an act of the persistence provider
determining that the first instance and second instance are the
same instance (act 407). For example, instance persistence
command processor 204 can determine that lock response
213 and 214 have both requested lock acquisition on instance
208.

Method 400 includes an act of the persistence provider
determining that the second instance version is a newer
instance version than the first instance version (act 408). For
example, instance persistence provider 204 can compare ver-
sion 261 and version 263. From the comparison, instance
persistence command processor 204 can determine that ver-

10

15

20

25

30

35

40

45

50

55

60

65

14

sion 263 of instance 208 is newer than version 261 of instance
208 and thus version 261 is obsolete.

Method 400 includes an act of the persistence provider
failing the first command in response to the determination that
the first command is holding a lock for an obsolete instance
version (act 409). For example, instance persistence com-
mand processor 204 can fail command 211 in response to
determining that command 211 is holding a lock for version
261.

Failing a command may include notifying an execution
thread or application host if the command was previously
indicated to have completed successfully. For example, prior
to the detection of the lock conflict, instance persistence
command processor 204 may have indicated to execution
thread 202 A that command 211 completed successfully. Sub-
sequent to the detection of the lock conflict, instance persis-
tence command processor 204 may indicate to execution
thread 202A or application host 201 that command 211 has
failed. Execution thread 202A or application host 201 may
take a corrective action based on the notification that com-
mand 211 has failed (e.g., by aborting the computation that
execution thread 202A is performing on instance 208).

As previously described, an application host can attempt to
override a lock, such as, for example, when a locked is deter-
mined to be spurious. Overriding a lock can include repeating
the attempt to acquire the lock, potentially disregarding an
existing lock if it is held by the application host with the
specific lock version indicated by the lock conflict. Because
the lock may have been freed subsequent to the second com-
mand being received by the instance store, it is possible that
another application host or even the same application hosthas
since locked the instance during resolution of the lock con-
flict. Accordingly, lock versioning provides a mechanism to
detect that the lock in a second lock conflict is different than
the lock previously indicate during a first lock conflict while
attempting to acquire the lock.

As such, a second lock conflict could be either type of lock
conflict (as described with respect to methods 300 and 400).
Further, either type of lock conflict can be handled without
knowledge of the first lock conflict. Accordingly, successive
attempts are independent. For example, it is even possible to
receive the response to the new command that locked the
instance again before reattempting the second command.
Thus, it can be determined that the lock at a new version has
been received and the lock acquisition is to fail without hav-
ing to go back to the instance store.

Embodiments of the invention also include resolving lock
conflicts between three or more commands through simulta-
neous implementation of techniques similar to those
described in methods 300 and 400. For example, a lock con-
flict between three commands can be resolved using a com-
bination of lock versions and determining when commands
were received.

Accordingly, embodiments of the invention can employ a
logical lock clock maintained by the state persistence system
for each persisted state storage location. Lock times can be
incorporated into the bookkeeping performed by an instance
persistence command processor to distinguish cases where
the instance is locked by the application host at a previous
logical time from cases where the instance is concurrently
locked by the application host through a different name. The
instance persistence command processor can additionally
maintain a logical command clock for commands issued by
the application host to the state persistence system, with
introspection to determine which issued commands may
potentially take a lock. The instance persistence command
processor can then resolve conflicts by pausing command

US 9,348,659 B2

15

execution until the effects of potentially conflicting locking
commands become visible and by examining the lock time to
distinguish among multiple copies of a persisted state storage
location.

For example, embodiments of the invention can be used to
resolve lock conflicts caused by reordering of parallel
requests. An instance persistence command processor can
receive a first application message from a first execution
thread for delivery to an instance. However, based on the
content of the first application message the destination
instance may be unclear. For example, the first application
message may contain business information (such as an order
number) that is part of the instance’s data rather than a unique
identifier for the instance itself. Even the application host may
be unable to resolve the first application message to the cor-
rect destination instance. For example, even by checking the
first application message for a unique instance identifier and
searching the previously loaded instances for data corre-
sponding to the business information in the message, the
application host may fail to find a suitable instance. The
instance store may be able to resolve the first application
message to a particular instance by correlating the informa-
tion in the message with the data of some instance. Therefore,
the application host may ask the instance store to load the
appropriate instance (or create a new instance if no appropri-
ate instance already exists).

During essentially the same time, a second application
message is received by the application host on a second par-
allel execution thread. The second application message may
similarly not uniquely identify a destination instance. Fur-
thermore, the second application message may contain dif-
ferent business information. For example, rather than con-
taining an order number, the second application message may
contain the customer’s shipping address. Thus, although the
two application messages may refer to the same destination
instance, the application host may be unable to detect this
relationship. As such, the second execution thread proceeds to
ask the instance store to load the appropriate instance (or
create a new instance if no appropriate instance already
exists).

Due to re-ordering, the response to the second execution
thread can be that the application host already has locked the
relevant instance. However, the application host may have yet
to receive notification of the lock. Thus, an instance persis-
tence command processor can refer to a command log to
resolve the conflict.

Other sequences of events may lead to a similar response
by the instance store. For example, the application host may
have aborted an execution thread or previously crashed, thus
losing its record of having locked the instance while the
instance store still believes that the application host has a
copy. Similar races can occur when the application host on
one execution thread saves and unloads an instance while
simultaneously another execution thread loads the same
instance. A resolution to the lock conflict must distinguish
these various cases in order to consistently reconcile the state
of the application host and instance store. Embodiments of
the invention can be used to resolve lock conflicts resulting
from these as well as other additional sequences of events.

Embodiments of the invention also include computer
architectures having one or more persistence providers. Each
persistence provider provides a plurality of application hosts,
each with one more execution threads, with access to
instances stored at an instance store. Within these embodi-
ments, each instance persistence provider can include a com-
mand clock and the instance store can include an instance
clock. Information obtained from the command clocks and

10

15

20

25

30

35

40

45

50

55

60

65

16

from the instance clock can be used to resolve lock conflicts
between application hosts based both on temporal ordering
and versioning. Thus, embodiments of the invention can
resolve lock conflicts between a plurality of applications
hosts wherein commands are receive at different times and
refer to different versions of an instance.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A computing system comprising:
one or more processors; and
one or more storage medium having stored executable
instructions which, when executed by the one or more
processors, implement a method for processing com-
mands received from one or more application hosts in a
manner that is suitable for addressing potential lock
conflicts with instances stored in an instance store, the
method comprising:
an act of maintaining a command log, the command log
tracking commands submitted by the one or more
application hosts for which corresponding command
results have not yet been made visible to the applica-
tion hosts, the one or more application hosts including
aplurality of execution threads configured to issue the
commands for persisting the instances to and access-
ing the instances from the instance store, at least a
subset of the commands resulting in an execution
thread requesting an instance lock during execution;
an act of receiving a first command from a first execution
thread and receiving at least a second command;
determining whether each of the first command and the
second command has a potential to cause a lock con-
flict;
upon determining whether each of the first command
and the second command has the potential to cause
the lock conflict, refraining from logging the second
command in the command log in response to deter-
mining the second command does not have the poten-
tial to cause the lock conflict and logging the first
command in the command log with log information
that is subsequently used by the computing system to
resolve the at least one lock conflict in response to
determining the first command does have the poten-
tial to cause the lock conflict, wherein the log infor-
mation includes a time stamp that indicates when the
first command was received; and
an act of using the command log to resolve at least one
lock conflict based at least in part on the log informa-
tion maintained in the command log.
2. The computing system of claim 1, wherein the method
further includes:
an act of maintaining a list of commands that will execute
without requesting acquisition of an instance lock; and

an act of using the list of commands to make the determi-
nation that the first command has the potential to cause
the lock conflict.

3. The computing system of claim 2, wherein the presence
of the second command on the list of commands causes the
determination that the second command does not have the
potential to cause the lock conflict and thereby causes the

US 9,348,659 B2

17

computing system to responsively refrain from logging the
second command in the command log.

4. The computing system of claim 1, wherein the first
command is a command requesting uncoordinated read
access to one or more instance in the instance store.

5. The computing system of claim 1, wherein determining
the first command has the potential to cause the lock conflict
is based on a determination as to whether the first command
will request acquisition of a lock for an instance that is already
locked.

6. The computing system of claim 5, wherein determining
the first command does have the potential to cause the lock
conflict is further based on a determination that there is insuf-
ficient information to determine whether the first command
will request the acquisition of the lock for the already locked
instance.

7. The computing system of claim 6, wherein the method
further includes:

receiving additional command information after the first

command is logged as a log entry in the command log,
the additional command information being operable to
determine that the first command does not have the
potential to cause the lock conflict; and

removing the log entry from the command log based on the

additional command information.
8. The computing system of claim 1, wherein the system is
a distributed computing system that includes a plurality of
different computers that are connected over a network.
9. The computing system of claim 8, wherein the comput-
ing system includes the instance store.
10. The computing system of claim 8, wherein the com-
puting system includes the one or more application hosts.
11. The computing system of claim 1, wherein the time
stamp indicates when the first command was received relative
to at least one other logged command.
12. A computer storage device comprising stored execut-
able instructions which, when executed by the one or more
processors, implement a method for processing commands
received from one or more application hosts in a manner that
is suitable for addressing potential lock conflicts with
instances stored in an instance store, the method comprising:
an act of maintaining a command log, the command log
tracking commands submitted by the one or more appli-
cation hosts for which corresponding command results
have not yet been made visible to the application hosts,
the one or more application hosts including a plurality of
execution threads configured to issue the commands for
persisting the instances to and accessing the instances
from the instance store, at least a subset of the com-
mands resulting in an execution thread requesting an
instance lock during execution;
an act of receiving a first command from a first execution
thread and receiving at least a second command;

determining whether each of the first command and the
second command has a potential to cause a lock conflict;

upon determining whether each of the first command and
the second command has the potential to cause the lock
conflict, refraining from logging the second command in
the command log in response to determining the second
command does not have the potential to cause the lock
conflict and logging the first command in the command
log with log information that is subsequently used by the
computing system to resolve the at least one lock conflict
in response to determining the first command does have
the potential to cause the lock conflict, wherein the log
information includes a time stamp that indicates when
the first command was received; and

10

15

20

25

30

35

40

45

50

55

60

65

18

an act of using the command log to resolve at least one lock
conflict based at least in part on the log information
maintained in the command log.
13. The computer storage device of claim 12, wherein
determining whether the first command has the potential to
cause the lock conflict is based on whether the first command
will request acquisition of a lock for an instance that is already
locked, and wherein the method further includes:
an act of maintaining a list of commands that will execute
without requesting acquisition of an instance lock; and

an act of using the list of commands to make the determi-
nation, and wherein the presence of the second com-
mand on the list of commands causes a determination
that the second command does not have the potential to
cause the lock conflict and wherein the absence of the
first command on the list of commands causes a deter-
mination that the first command does have the potential
to cause the lock conflict.

14. The computer storage device of claim 12, wherein
determining whether the first command has the potential to
cause the lock conflict is based on whether the first command
will request acquisition of a lock for an instance that is already
locked, and wherein the method further includes determining
the first command has the potential to cause the lock conflict
based on a determination that there is insufficient information
to determine that the first command will not request the acqui-
sition of the lock for the already locked instance.

15. The computer storage device of claim 12, wherein the
method includes:

logging the first command in the command log as a log

entry in response to determining the first command does
have the potential to cause the lock conflict; and
removing the log entry from the command log once it is
subsequently determined that the first command no
longer has the potential to cause the lock conflict.

16. The computer storage device of claim 12, wherein the
time stamp indicates when the first command was received
relative to at least one other logged command.

17. A computer-implemented method for processing com-
mands received from one or more application hosts in a man-
ner that is suitable for addressing potential lock conflicts with
instances stored in an instance store, the method comprising:

a computing system maintaining a command log, the com-

mand log tracking commands submitted by the one or
more application hosts for which corresponding com-
mand results have not yet been made visible to the appli-
cation hosts, the one or more application hosts including
a plurality of execution threads configured to issue the
commands for persisting the instances to and accessing
the instances from the instance store, at least a subset of
the commands resulting in an execution thread request-
ing an instance lock during execution;

the computing system receiving first command from a first

execution thread and receiving at least a second com-
mand;

the computing system determining whether each of the first

command and the second command has a potential to
cause a lock conflict;

the computing system, upon determining whether each of

the first command and the second command has the
potential to cause the lock conflict, refraining from log-
ging the second command in the command log in
response to determining the second command does not
have the potential to cause the lock conflict and logging
the first command in the command log with log infor-
mation that is subsequently used by the computing sys-
tem to resolve the at least one conflict in response to

US 9,348,659 B2

19

determining the first command does have the potential to
cause the lock conflict, wherein the log information
includes a time stamp that indicates when the first com-
mand was received; and
the computing system using the command log to resolve at
least one lock conflict based at least in part on the log
information maintained in the command log.
18. The method of claim 17, wherein the method further
includes:
the computing system logging the first command in the
command log as a log entry in response to determining
the first command has the potential to cause the first lock
conflict; and
the computing system receiving the second command from
a second execution thread.
19. The method of claim 17, wherein the time stamp indi-
cates when the first command was received relative to at least
one other logged command.

#* #* #* #* #*

10

15

20

